If not by impact, then what?

One of the large regions that tweaks my curiosity about impact events in a very big way is an area that extends from eastern New Mexico to just the other side of Odessa, and Midland, Texas.

In the image below we see a small part of that area near Vaughn, New Mexico. Using Google Earth’s historical image feature, we can view the same place from about 15,000 feet, in images taken at different times of the year.nmc51          .

As you can see, there are numerous craters. You get a different set of colors in the late summer.


The early black & white images are sometimes even more telling.


These next few are little closer to Vaughn.


Here it is in the late summer.


And in black& white.


Crater fields of comparable fragment sizes can be found in scattered, locally dense, clusters all the way to central Texas.

Anyone can Google up some images of the Odessa crater, in west Texas. But the big mystery I’m struggling with is, what about all the others? In the world according to Google Earth, the Odessa crater is only one of thousands liberally scattered among the oil fields of west Texas. In the image you see below, the white lines are dirt roads about 7, or 8, meters wide. And each of the clearings that show up as little rectangles of a half an acre, or so, are the location of an oil well pump.


Let’s zoom in close to one of the craters. This one’s almost 190 meters wide.


The early black & white view is interesting too.


This one’s interesting too. Three at a time.


And a classic double ring crater.


On any other planetary surface in the solar system no one would hesitate to trust their eyes, and call these these what they look like; impact craters.

I asked NASA’s David Morrison what he thought of these things. He expressed his doubts. He said he thought that a cluster impact event would be “Highly unlikely”.  And his views are typical of most mainstream planetary scientists.

But in march 2010, W. M. Napier  published  a paper in the Journal Monthly Notices of the Royal Astronomical Society, and titled, Paleolithic extinctions and the Taurid Complex. In it professor Napier points out that:

“The fragmentation of comets is now recognized as a major route of their disintegration, and this is consistent with the numerous sub-streams and co-moving observed in the Taurid complex.”

And in an earlier 2009 paper by professor Napier, and titled Comets, Catastrophes, and Earth’s History we read ,

“The evidence that an exceptionally large (50-100 km) comet entered a short-period, Earth- crossing orbit during the upper Paleolithic, and underwent a series of disintegrations, now seems compelling. The idea is not new, but it has been strengthened by an accumulation of evidence from radar studies of the interplanetary environment, from the LDEF experiment, from numerical simulations of the Taurid complex meteoroids and ‘asteroids’, and from the latter’s highly significant orbital clustering around Comet Encke.

The disintegration of this massive Taurid Complex progenitor over some tens of thousands of years would yield meteoroid swarms which could easily lead to brief, catastrophic episodes of multiple bombardment by sub-kilometer bolides, and it is tempting to see the event at ∼ 12,900 BP as an instance of this. Whether it actually happened is a matter for Earth scientists, but from the astronomical point of view a meteoroid swarm is a much more probable event than a 4 km comet collision

Most of the academic community assume that large clusters of cometary debris don’t hit the Earth. At least, not in the geologically recent past. And when looking for answers, the typical response for those in New Mexico is that they are all probably karst sinkholes, because they are all in limestone.

But there’s just too darn many of them. Any given karst sinkhole is representative of a partial collapse of a much larger cave system beneath. And if we work from the gradualist postulate that these holes in the ground appeared, over a great span of time, our thinking is still stuck in a box.

There are many thousands of them, in many different terrains, and all in exactly the same almost pristine condition. They can be found in numerous large clusters, in a variety of sizes in a vast region that includes almost all of eastern New Mexico, and West Texas. And they average about 100 meters in diameter.  

Take your pick. Which is more plausible? A giant series of inter-connecting cave systems covering tens of thousands of square miles, with too many large sinkholes as big as a large sports  stadium, all breaking the surface, and collapsing, at nearly the same time to count? Or the giant crater fields caused by the almost simultaneous, late Pleistocene – early Holocene impacts of a cluster of cometary fragments from the Taurids?

I’ve been asking around, and digging  for evidence that someone has actually done some real science on these things. And all I’ve been able to get are wimpy answers that begin with; “Well, most geologists agree that______”, or words to that effect. Heck, I don’t care what they’ve all decided to agree about. I want to know what evidence they’ve dug up. Can someone tell me who has done some science there?

As for me, and until proven otherwise, I prefer to trust my own eyes. Those surfaces we see those things in all date to the late Pleistocene. And I’m working from the postulate that they are related to the impact storms of the Taurid progenitor.

There’s a few more to be seen in this gallery called Craterfield.

Published in: Uncategorized on May 16, 2011 at 12:39 pm  Comments (2)  

The URI to TrackBack this entry is: https://craterhunter.wordpress.com/2011/05/16/if-not-by-impact-then-what/trackback/

RSS feed for comments on this post.

2 CommentsLeave a comment

  1. I started using Google Earth and Maps to search for craters easy to reach by roads in central New Mexico:

    crater .4 km NW X .3 km NE,
    7.2 km W of Yeso, NM,
    .9 Km W of Co Rd 142,
    .4 km S of RR

    34.444317 -104.691783 1.489 km el low, RR 1.500 km el

  2. As for me, and until proven otherwise, I prefer to trust my own eyes. Those surfaces we see those things in all date to the late Pleistocene. And I’m working from the postulate that they are related to the impact storms of the Younger Dryas Impacts.

    Wonderful research… thank you – BIG TIME.
    Please keep trusting your own eyes!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: